skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dulguerov, Leilani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Precipitation clusters are spatially contiguous precipitating regions. Large clusters in the tropics are rare, extreme events that include organized precipitating systems. Changes to the probability distributions of tropical precipitation clusters under global warming are examined using models from the coupled model intercomparison project Phase 6 (CMIP6). Every analyzed model projects significant increases in frequencies of both very large‐sized clusters and clusters with very large area‐integrated precipitation (cluster power). The occurrence probability for the highest historical cluster power values increases by a factor between 4 and 15 among models in the end‐of‐century SSP5‐8.5 scenario. These changes primarily occur over the precipitating tropics: the western Pacific, Indian subcontinent, central and east Pacific convergence zones, and parts of South America. This spatial pattern is largely explained by Clausius‐Clapeyron scaling of current climate cluster power values. Societal impacts of cluster power increases could be acute in coastal regions of the Indian subcontinent and western Pacific islands. 
    more » « less